当前位置: 东星资源网 > 高考资料 > 高考分数线 > 正文

电网故障诊断 [电网故障诊断方法的研究及展望]

时间:2019-02-08 来源:东星资源网 本文已影响 手机版

  摘要:本文介绍了电网故障诊断的意义及其各种故障诊断方法,并对现行电网故障诊断方向进行了研究,提出展望。   关键词:电网故障诊断 ;故障诊断方法;展望   Abstract: this paper introduces the network fault diagnosis of the significance and all kinds of fault diagnosis methods, and the current power grid failure diagnosis direction was studied, and prospected.
  Keywords: power grid failure diagnosis; Fault diagnosis method; looking
  
  
  中图分类号:U665.12文献标识码:A 文章编号
  1引言
   我国电力正处于一个高速发展的时期,电力系统的迅速发展、受端负荷的持续增长、跨区域联网规模的扩大、电力工业市场化改革以及生态环境的约束使电网结构和运行方式日趋复,使电网状态趋近其运行极限,系统运行的不稳定因素增多,种种情况导致因偶发故障引发大规模停电风险的概率增高。电网是国民经济发展的大动脉,一旦发生大面积停电[1],后果不堪设想。客观上讲,电力系统作为一个庞大的、高度复杂的动态系统,常处于不同的扰动之中,故障的发生又往往是无法完全避免的,这些问题给电网故障诊断提出了新的挑战。随着我国电力工业的发展,故障诊断研究具有很大的现实意义和实用价值[2]。
  2 电网故障诊断方法研究
   电力系统故障诊断是根据事发环境下各类信息进行故障识别的过程。电力系统发展使得电网的规模越来越大,结构越来越复杂,电网发生故障关系到电力系统安全稳定运行的重要问题。为了适应各种简单和复杂事故情况下故障的快速、准确识别,需要电网故障诊断系统进行决策参考。因此,从20世纪80年代起国内外专家学者们进行了大量的研究工作,提出了多种故障诊断技术和方法[3],主要有专家系统、人工神经网络、优化技术、Petri网络、粗糙集理论、模糊集理论、贝叶斯网络、基于电网潮流分布特征法和信息理论法。下面分别介绍这几种应用在电网故障诊断的研究发展状况。
  2.1专家系统法
   专家系统是发展最早,也是比较成熟的一种人工智能技术。它利用计算机技术将相关专业领域的理论知识和专家的经验知识融合在一起,通过数据库、知识库、推理机、人机接口、解释程序和知识获取程序的有机连接,达到具备解决专业领域问题的能力。
   70年代初期专家系统就被引入到电网故障诊断研究领域。其在电网故障诊断[4]中的典型应用是基于产生式规则的系统,即把保护、断路器的动作逻辑以及运行人员的诊断经验用规则表示出来,形成故障诊断专家系统的知识库,进而根据报警信息对知识库进行推理,获得故障诊断的结论,具有直观性、实时性和有效性;能够在一定程度上解决不确定性问题;能够给出符合人类语言习惯的结论并具有相应的解释能力等优点。但是不可避免在实际应用中存在一些缺陷:知识获取瓶颈、系统维护难、容错能力差等问题。现在多是将专家系统与其他方法结合起来进行故障诊断。
  2.2 人工神经网络
   人工神经网络是通过模拟人类的神经系统来处理信息过程的一种人工智能技术。它具有并行处理、非线性映射、联想记忆能力和在线学习能力等特点,在电力系统和其他领域中都有着广泛的应用。
   电网中不同的故障组合模式会产生不同的故障信息组合模式,可以将故障诊断问题视为模式识别问题,采用人工神经网络进行处理。为此需要建立比较完全的训练样本,用预选事故集作为输入,故障信息集作为监督输出,对神经网络进行训练。文献[5]较早将BP(误差反向传播)神经网络应用于电力系统故障诊断,但该方法存在训练速度慢的缺点。径向基函数(RBF)神经网络具有任意函数逼近能力,且学习速度更快,因此文献[6]提出用新型神经网络解决故障诊断问题。与专家系统诊断方法相比, 神经网络故障诊断方法可避免专业知识和专家启发性知识的形成、表达及管理等繁琐工作。同时, 如何保证训练神经网络所用的样本库的完全性、提高训练速度和收敛性,仍是神经网络需要重点解决的问题。
  2.3 优化技术
   随着计算机技术和计算数学的发展,国内外学者提出了多种优化算法,采用优化算法进行电网的故障诊断是一种新的思路。采用优化算法需要根据电网故障的特点设定假想事故集的目标函数或适应度函数,各种优化算法根据适应度值对假想事故集进行更新,直至搜索到适应度最大的假想事故集,以作为最终故障诊断的结果。其实质是将故障诊断问题转化为无约束的一整数规划问题进行寻优处理。目前研究得较多的是遗传算法、禁忌搜索、模拟退火等算法等等。
  2.4 Petri网
   Petri网是数学家C.A.Petri于1960-1965年提出的一种通用的数学模型,可用图形表示,并用矩阵运算进行严格的数学描述。Petri网既可用位置节点(Place)和变迁节点(Transition)对系统进行静态的结构分析,又可以通过节点上的令牌(Token)进行动态的行为分析,可用于描述电网故障及切除的离散事件动态行为。
   Petri网作为一种简洁、高效的形式化语言,在故障诊断领域有着巨大的潜力。但另一方面,在对大规模或复杂性网络进行网建模时,可能出现状态组合爆炸的情况,,而且Petri网容错能力较差,不易识别错误信息。为此还需研究对网进行化简和分解的归纳分析技术,或考虑采用更高级的有色网。
  2.5粗糙集理论
   粗糙集理论是一种新的研究不完整、不确定且不精确信息的表达、学习和归纳的数学工具。它建立在分类机制的基础之上,将分类理解为等价关系, 用这些等价关系对特定空间进行划分,提取出组涵的“知识”,知识约简是粗糙集理论的核心内容之一。
   文献[7]根据电网故障信息中的冗余性,利用粗糙集理论对不同故障模式所对应的警报信息组合进行化简,识别出必不可少的警报信息,在决策表中剔除可有可无的警报信息,以便从样本数据中提炼出简洁、高效、具有一定容错能力的规则知识库。粗糙集理论用于电网故障诊断的缺点是有些先验信息不能得以有效利用, 且电网规模过大时, 决策表的形成也会比较困难。
  2.6 模糊集理论
   模糊集理论是在模糊集合理论的基础上发展起来的,它采用模糊隶属度的概念来描述不精确、不确定的对象,并采用近似推理规则,使专家知识得以有效表达,且具有很强的容错能力。
   综上可看出,模糊集理论比较适合用来处理电网故障诊断中继电保护动作的不确定性和故障信息的不完备性。文献[8]不仅引人了保护和断路器的动作信息,而且按额定值将遥测量进行模糊化用于故障诊断,为故障诊断的多信息融合提供了新的思路。采用模糊集理论进行电网故障诊断也存在一些问题:像隶属度函数的选择无明确的标准、可维护性较差等。所以在电网故障诊断领域中,模糊集理论通常与其他诊断方法相结合,互相渗透、取长补短。
  2.7贝叶斯网络
   贝叶斯网络是基于图论和严格的概率理论的一种不确定性知识表达和推理模型。目前贝叶斯网的理论研究主要集中在其网络的构造、学习、推理和应用等几个方面。它将因果知识和先验概率信息有机结合,使用概率理论来处理不同知识成分之间因条件相关而产生的不确定性,同时它能够有效的进行多源信息的表达和融合。
   基于贝叶斯网络及其改进方法的电网故障诊断方法[9]能针对电网故障中存在的信息不完备和不确定性问题,建立完备和不完备信息下的贝叶斯网络模型进行故障诊断,但该方法需要先验概率信息,给出的亦是故障概率,而且贝叶斯的训练复杂,从理论上讲,它是一个NP-complete问题,也就是说,对于现在的计算机是不可计算的。但是,对于某些应用,这个训练过程可以简化,并在计算上实现。
  2.8 基于电网潮流分布特征法
   基于电网潮流分布特征法[10]立足故障前后电网潮流分布特征的变化,借助支路开断分布因子,智能选择量测支路和量测数据,在线预生成故障模式库,供不断提取的潮流分布特征模式进行匹配,具有快速、准确、自适应智能诊断的特性。
   此方法能自适应跟踪电网运行方式并动态选择量测对象和量测数据,在线分析电网潮流分布特征与网络结构变化的关系,以提取潮流分布特征与故障模式库中模式进行匹配来实现电网故障的在线诊断。文[10]中算例表明,此方法准确高效,具有在线自适应智能诊断的功能,有助于提高把握网络事态和正确应对事故的能力。
  2.9 信息理论法
   信息理论由Shannon于1948年首先提出,它从概率论出发,建立了信息熵、互信息等概念,比较科学地解决了概率信息的测度问题。目前,信息的统计定义已扩展到能够对非统计意义的信息予以度量。从信息理论的角度看,电网故障诊断还可视为一个多信息融合[11]的过程。如何将保护和断路器的动作信息、遥测量信息、录波信息、历史统计信息及专家经验信息等多种信息加以有效综合利用,这些难题将来也许可借鉴多信息融合技术中的信号处理、参数优化、统计和模式识别等方法加以解决。
  3.结论
   本文介绍了电网故障诊断的意义及其各种故障诊断方法的研究状况,为以后研究电网故障诊断的学者们奠定了一定的基础,具有现实的意义。
  4.电网故障方法研究展望
   电力系统是一个分布式的高维数、高度非线性的动态系统,而且有一系列比较特殊的物理特点,受其影响,电网的故障诊断也有一些比较突出的难点。目前,电网发生故障时候,故障信息反应为电气量、继电保护和开关量的异常变化。而事实表明:依靠单一信息往往不能满足诊断的性能要求,多源信息的异构特性,加上诊断中的不确定性,使综合利用多源信息以及信息融合非常困难,目前这方面的理论研究也还远远不够,所以信息融合技术方法研究是以后研究的方向。
  参考文献:
  李春艳,陈洲,肖孟金等.西欧“11.4”大停电分析及对华中电网的启示[J].高电压技术, 2008,34(1):163-167.
  郭创新,朱传柏,曹一家,等.电力系统故障诊断的研究现状与发展趋势[J].电力系统自动化,2006,30(8):98-103.
  陈玉林,陈允平,孙金莉等.电网故障诊断方法综述[J].中国电力,2006,39(5):27-31.
  Angeli C.Online expert systems for fault diagnosis in technical processes[J].Expert Systems,2008(3):115-132.
  CHEN E.Application of neural network computing in intelligent alarm processing[A].Power industry Computer Application Conference[C].Seattle,USA:IEEE,1989.246-251.
  刘志远,吕剑虹,陈来九.新型RBF神经网络及在热工过程建模中的应用[J]. 2002,22( 9):118-122.
  刘育名,周全,唐捷,等.粗糙集理论提取配电网故障诊断规则的方法[J].高电压技术, 2006,32(8):97-99.
  周明,任建文,李庚银等.基于模糊推理的分布式电力系统故障诊断专家系统[J].电力系统自动化,2001,25(24):33-36.
  吴欣,郭创新,曹一家.基于贝叶斯网络及信息时序属性的电力系统故障诊断方法[J].中国电机工程学报,2005,25(13):14-16.
  陈彬,于继来.基于电网潮流分布特征的在线故障智能诊断[J].电力系统自动
   化,2007,31(16):29-34.
  王润生.信息融合[M].北京:科学出版社,2007.
  郝艳妮(1987-),西南交通大学硕士研究生,专业为电力系统及其自动化,主要研究方向为智能监控技术以及电网故障诊断等。

标签:电网 展望 故障诊断 方法