当前位置: 东星资源网 > 作文大全 > 写作技巧 > 正文

【智能天线构成及应用研究】智能天线在LTE中的应用

时间:2019-02-08 来源:东星资源网 本文已影响 手机版

  摘要:智能天线是近年发展起来的,用于提高无线通信系统的容量和抗干扰能力的新技术。本文全面地阐述了智能天线的概念、构成、特点,同时还给出了智能天线在无线通信系统中的应用。
  关键词:智能天线无线通信应用
  Abstract: the smart antenna is developed in recent years, used to improve the capacity of the wireless communication system and the anti-jamming ability of new technology. This paper describes the concept of smart antenna, composition, characteristics, and it gives the smart antenna in wireless communication system, the application.
  Key words: the smart antenna wireless applications
  
  
  中图分类号:TN82文献标识码:A文章编号
   一、智能天线的基本概念
   天线是实现电磁波传播的必备器件:信号发射端利用天线实现电磁波辐射,信号接收端利用天线实现电磁波感应。因此,不论何种通信系统,只要它采用无线传输方式,就必须使用天线,而不论该系统采用的工作频率是多少,属于何种频段,也不论采用什么多址技术或者什么调制技术。
   智能天线综合了自适应天线和阵列天线的优点,以自适应信号处理算法为基础,并引入了人工智能的处理方法。智能天线不再是一个简单的单元,它已成为一个具有智能的系统。其具体定义为:智能天线以天线阵列为基础,在取得电磁信息之后,使用人工智能的方法进行处理,对电磁环境做出分析、判断,并自动调整本身的工作状态使之达到最佳。依据天线的智能化程度可将天线分成可变波束天线、动态相控阵列和自适应阵列3类。可变波束天线依据接收功率最大原则,在几个预设阵列波束中进行切换;动态相控阵列使用测向算法,能够连续追踪用户的方向而改变天线的波束,使接收功率达到最大;自适应阵列既对用户进行测向,又对各种干扰源进行测向,在形成波束时,不仅使接收功率最大,而且使噪声降到最低,从而使接收信噪比最高。
   随着通信的发展和技术的进步,对所用器件、部件的要求也越来越高。智能天线正是适应通信发展而产生的新事物――在无线接入系统、卫星通信系统和移动通信系统(不论在公众通信网中,还是在专用通信网中)以及军事通信等系统中,均有其重要应用,也必将更广泛的被应用。
   二、智能天线系统的构成
  智能天线之所以能具备这些优良性能,这同其系统构成有关,特别是波束形成网络。波束形成网络构成复杂,大体上可分为网络处理系统和网络控制系统两部分,依照网络处理和网络控制的工作原理、结构不同,智能天线可分成波束切换型和自适应阵列两种类型。
   波束切换型是指,智能天线能形成多少个空间波束一空间信道事先就已确定,这个确定既包括波束指向,也包括数量。确切地说,这类天线的波束数量有限。当智能天线服务于某用户时,系统能自动从有限波束中选择一个或几个的组合以服务于该用户,而不管所选波束的最大指向是否对准用户,也就是说用户虽处在所选波束作用范围,却有可能不在最大方向上。而且,当用户在移动时波束却是固定的,在用户移动到这种另一波束上时,系统会由此波束切换到另一波束上。基于相同原因,另一波束也不保证其最大指向随时指向用户,这些特点构成了这类智能天线的缺点,但是这类天线结构简单。
  自适应阵列型智能天线能形成无限多波束,并能使用户始终得到波束的最大指向。当用户移动时,波束也能作自适应改变。显然,这种类型的智能天线性能最佳,但其网络控制系统相当复杂,还要求系统的实时性好,即要求处理网络在软件上需要有收敛速度快、精度高的自适应算法,以能快速调整波束的复数加权参数W。
  目前,智能天线网络系统使用的算法有最小、最大信号比、最小偏差等。它们又各有特点,因而在实际系统中常需要并用,以取长补短,特别是在移动通信和个人通信中。这是因为在这两种通信系统中,电波传播主要在地面,而地面的电波传播环境很恶劣。基于智能天线性能极大地依赖于网络系统软件特性,因此智能天线也被称作“软件天线”。
   早期智能天线的波束形成网络用模拟电路,但调试难度大、性能稳定性和可靠性差,目前都主张采用数字电路。较为一致的意见是采用高速率的数字信号处理芯片来实现。实际使用的芯片主要有两种:一种是DSP通用芯片,如TMS320系列等。另一种则为专用集成电路(ASIC器件),其中最典型的器件是能进行大规模并行处理的门阵列电路FPGA,以C6x调处理器为基础的DSP系统。波束形成网络平台应提供充分模块以支持多个C6x,而且要采用高效率的I/O结构。
   三、智能天线在无线通信系统中的应用
  在传统的无线通信系统中,由于无法确定移动用户的地理位置而不得不采用全向发射天线。实际上只有很小部分的信号被移动用户截获,这不仅造成能量的损失,更为严重是构成对其他用户人为的干扰,从而导致系统容量和信干噪比的下降。采用智能天线的目的,就是要在基台与移动用户之间建立一条能量相对集中的无线链路。为实现上述目标,智能天线系统需完成以下两大任务:
  1.能实时感知电磁环境,包括DOA测向、谱估计、从接收到的信号中分离出直射信号和多径信号;
  2.后处理过程,包括信道分离、抗多径干扰和衰落。该处理过程取决于算法的收敛速度和稳定性,以及DSP的处理速度。在此,我们给出表征系统容量的单位:
  bit/s/Hz/unit-area。该参数表示在给定发射功率、给定频谱范围内信号的传输速率。系统容量的提高表现在两个方面:(1)对于用户集中的都市区,在给定小区范围内能容纳更多的移动用户;(2)对于用户稀疏的郊区,在保证用户通信质量的前提下,扩大小区的服务范围。智能天线对系统容量的提高有以下两条途径:
  1.利用智能天线的波束成形和自适应测向跟踪能力,实时地形成窄的主瓣波束对准所需信号,在其他方向尽量压低付瓣增益。以此来代替传统的全向天线。智能天线提高了接收信号的信干噪比,从而提高了系统容量。此时对应单用户算法。
  2.把智能天线等效为空域滤波器,实现空分多址传输,即所谓的SDMA。此时要采用多用户检测算法。需要说明的是,SDMA并不是与FDMA、CDMA、TMDA等同的多址方式,而是附加在上述多址方式上的优化方案。
  要精确地计算智能天线对系统容量的提高是十分困难的。首先,必须确定小区用户的分布情况、小区的无线传播模型、智能天线的方案与算法,并结合具体的通信体制加以讨论。目前已有许多文献进行有益的探索。这是智能天线研究的最重要的课题之一。
   智能天线既可在上行链路中单独使用,也可在上下行链路中同时使用。在下行链路中采用智能天线的最大优点在于,把基台盲目的、广播式的传播变为定向的信号传递。采用智能天线以后,一方面可以简化基台的设备,例如:过去基台要发射100W的功率则需要100W的功放,当采用十单元的天线阵列后,每单元只需1W的功放来激励。要知道100W的功放与1W的功放,无论是在价格还是性能上都有很大的区别。另一方面更为重要的是,定向传播将极大地减小基台对其他用户的人为的干扰,净化电磁环境,从而提高了系统容量。这一点具有十分重要的意义。需要指出的是,由于在FDMA系统中,上下行链路采用不同的频率。因此由上行链路得到的用户空间信息不能简单拷贝到下行链路。这时需要复杂的上下行链路分配方案。因此在下行链路中应用智能天线可以提高系统容量,简化基台设备。
  多径衰落是影响无线通信系统的关键因素之一。对此,人们做了大量的尝试并提出许多有效的方案。例如:分集技术、RAKE接收机、自适应滤波等等。而智能天线则从空间域的角度提供了一条新途径。智能天线能分辨出直射信号与各径多径信号,这是传统的抗多径技术无法得到的。如何与现有的抗多径技术相结合,较好地解决多径传播是智能天线研究的另一个重要的研究课题。
  四、结语
  智能天线对提高专用网和公众网通信系统容量、抗干扰能力,提高通信质量以及实现同一地址的各专用网的频率共享等具有巨大潜力,近年来备受关注。智能天线技术的应用还存在需要研究优化的地方,但是有充分的理由相信,智能天线必将出现美好的应用前景。

标签:天线 智能 研究