当前位置: 东星资源网 > 高考资料 > 高考体检 > 正文

[一道自主招生试题及其拓展]自主招生试题

时间:2019-01-18 来源:东星资源网 本文已影响 手机版

  2012年2月11日的“北约”(北京大学、复旦大学、南开大学、香港大学等高校联合自主招生联盟称为“北约”)自主招生试题中有一道这样的题目:   若锐角△ABC的外心为O,则点O到三角形三边BC,CA,AB的距离之比为 .(用角A,B,C表示?①)
  
  本题可以这样解:如图, OD,OE,OF分别垂直BC,CA,AB于D,E,F,因为△ABC内接于圆O(设其半径为R),故∠BOC=2∠BAC,OB=OC=R,考察△BOC的面积可知:
  S??△BOC?=BC×OD2=OB×OC×?cos?∠BOC2,由倍角公式和正弦定理得:
  
  OD=2R?2?cos?∠BAC?sin?∠BACBC
  =2R?2?cos?∠BACBC?sin?∠BAC=R?cos?∠BAC,
  同理OE=R?cos?∠ABC,OF=R?cos?∠BCA;
  所以,OD∶OE∶OF=?cos?A∶?cos?B∶?cos?C.
  说明:本题条件中的△ABC如果是直角三角形,则斜边的中点为外心,比值没有意义;如果△ABC是钝角三角形,则用类似的方法可以得到OD∶OE∶OF=|?cos?A|∶|?cos?B|∶|?cos?C|,即原结论加上绝对值即可。
  三角形除了外心,还有重心、内心、旁心、垂心,它们到三边的距离之比的情况,以及三角形的“五心”到顶点的距离之比的情况又是怎样的呢?这些距离的比能否用三角形的三个内角来表示?下面我们逐一加以讨论。
  一、 三角形“五心”中的其他“心”到三边的距离之比
  
  1.1 三角形的内心与旁心到三角形的三边距离之比:
   三角形的内心是角平分线的交点。由角平分线性质知,内心到三边的距离相等,即内心到三边的距离之比为1∶1∶1;同理三角形的旁心(旁切圆圆心:两条内角平分线与一条外角平分线的交点,如图)到三边的距离之比也为1∶1∶1。
  1.2 三角形的重心到三边的距离之比:
  
  如图, G为△ABC的重心,求G到BC,CA,AB的距离之比.
  连结GB,GC,分别过G,A作BC的垂线,垂足分别为E,F,设△ABC的面积为S,由重心的性质知:AG∶GD=2∶1,所以GE∶AF=2∶1,
  故S??△GBC?=13S??△ABC?=S3,又S??△GBC?=12GE×BC,所以GE=2S3BC.
  同理,G到AC和AB的距离分别为2S3AC,2S3AB,
  所以,G到BC,CA,AB的距离比为2S3BC∶2S3CA∶?2S3AB=?1BC∶1CA∶1AB,
  由正弦定理得:G到BC,CA,AB的距离之比为1?sin?A∶1?sin?B∶1?sin?C.
  说明:三角形的重心一定在三角形的内部,故本结论不仅对锐角三角形成立,对直角三角形和钝角三角形同样成立。
  1.3 三角形的垂心到三边的距离之比:
  
  如图,锐角△ABC的垂心为H,求HD∶HE∶HF.
  
  在?Rt?AHF中,HF=AH?sin?∠FAH,
  在?Rt?△ADB中,∠FAH+∠ABC=?π?2 ,
  所以HF=AH?cos?∠ABC,
  同理HF=AH?cos?∠ACB,
  所以HE∶HF=?cos?C∶?cos?B;
  同理HD∶HE=?cos?B∶?cos?A;
  综上可得,HD∶HE∶HF=1?cos?A∶1?cos?B∶1?cos?C.
  说明:对于△ABC,如果是直角三角形,则其垂心就是直角顶点,该直角三角形的垂心到两直角边的距离均为零,没有讨论的意义;如果是钝角三角形(不妨设C为钝角),则?cos?C是负值,而距离不可能是负值,故HD∶HE∶HF=1?cos?A∶1?cos?B∶1?cos?C不能成立。用类似于锐角三角形的方法不难证明:HD∶HE∶HF=1?cos?A∶1?cos?B∶1-?cos?C。显然,我们可以将非直角三角形的情况统一写成HD∶HE∶HF=1|?cos?A|∶1|?cos?B|∶1|?cos?C|.
  二、 三角形的“五心”到三个顶点的距离之比
  2.1 三角形的外心到三个顶点的距离之比:
  三角形的外心是三边的中垂线的交点,由中垂线的性质知其到三顶点的距离相等,所以三角形的外心到三顶点的距离比为1∶1∶1.这里无论是锐角三角形、直角三角形还是钝角三角形都满足.
  2.2 三角形的内心到三个顶点的距离之比:
  
  如图,△ABC的内心为I,求IA∶IB∶IC.
  在△IBC中,由正弦定理IB∶IC=?sin?∠ICB∶?sin?∠IBC,
  由内心是角平分线交点,可得:
  ∠ICB=12∠ACB,∠IBC=12∠ABC,
  所以IB∶IC=?sin?∠ACB2∶?sin?∠ABC2=1?sin?∠ABC2∶1?sin?∠ACB2
  同理,在△IAC中可以得到IA∶IB=?sin?∠ABC2∶?sin?∠CAB2=1?sin?∠CAB2∶1?sin?∠ABC2
  所以△ABC中,IA∶IB∶IC=1?sin?A2∶1?sin?B2∶1?sin?C2.
  2.3 三角形的垂心到三个顶点的距离之比:
  
  如图,锐角△ABC的垂心为H,求HA∶HB∶HC.
  在△AHB中,由正弦定理知,HA∶HB=?sin?∠ABH:?sin?∠BAH,由AD⊥BC,BE⊥AC知,
  ∠ABH+∠BAC=?π?2,∠BAH+∠ABC=π2,
  所以HA∶HB=?cos?∠BAC∶?cos?∠ABC.
  在△BHC中,同理可得HB∶HC=??cos?∠ABC∶?cos?∠BCA,?
  所以HA∶HB∶HC=?cos?∠BAC∶?cos?∠ABC∶?cos?∠BCA
  即锐角△ABC的垂心为H ,则HA∶HB∶HC=?cos?A∶?cos?B∶?cos?C .
  同样,这里也涉及到,如果△ABC为直角三角形,则没有讨论的必要;如果△ABC为钝角三角形,则不难得到HA∶HB∶HC=|?cos?A|∶?|cos?B|∶?|cos?C|,此亦是非直角三角形的统一形式。
  2.4 三角形的旁心到三个顶点的距离之比:
  如图,△ABC的一个旁心为O(此处O是∠B的内角平∠A,∠C的外角平分线交点),求OA∶?OB∶?OC.
  
  在△AOB中,∠ABO=∠ABC2,∠BAO=∠BAC2+?π?2,
  由正弦定理知:OA∶OB=?sin?∠ABC2∶?sin?∠BAC2+?π?2即OA∶OB=1?cos?∠BAC2∶1?sin?∠ABC2,
  在△BOC中,同理可得
  OB∶OC=?sin?∠ACB2+?π?2∶?sin?∠ABC2即OB∶OC=1?sin?∠ABC2∶1?cos?∠ACB2;
  所以OA∶OB∶OC=1?cos?∠BAC2∶?1?sin?∠ABC2∶1?cos?∠ACB2,?
  即得△ABC的一个旁心为O(此处O是∠B的平分线与∠A,∠C的外角平分线的交点),则 OA∶OB∶OC=1?cos?A2∶1?cos?B2∶1?cos?C2.
  同理我们也可以得到另两种情况:其一,△ABC的一个旁心为O(此处O是∠A的内角平分线与∠B,∠C的外角平分线交点)则OA∶OB∶OC=1?sin?A2∶1?cos?B2∶1?cos?C2;其二,△ABC的一个旁心为O(此处O是∠C的内角平分线与∠B,∠A的外角平分线交点)则OA∶OB∶OC=1?cos?A2∶1?cos?B2∶1?cos?C2.
  2.5 三角形的重心到三个顶点的距离之比:
  
  如图,G为△ABC的重心,求GA∶GB∶GC.
  
  由重心的性质可以知道,
  
  AG∶GD=BG∶GE=CG∶GC=2∶1,
  所以,求GA∶GB∶GC即是求AD∶BE∶CF,
  由中线长度公式:AD?2=12 (AB?2+AC?2)-BC?24
  =8R?2?sin?C+8R?2?sin??2B-4R?2?sin??2A4=
  
  (2?sin??2C+2?sin??2B-?sin??2A)R?2
  BE?2=(2?sin??2A+2?sin??2C-?sin??2B)R?2,
  CF?2=(2?sin??2A+2?sin??2B-?sin??2C)R?2,
  即AD∶BE∶CF=2?sin??2C+2?sin??2B-?sin?2?A∶
  
  2?sin??2A+2?sin??2C-?sin?2?B
  
  ∶
  2?sin??2B+2?sin??2A-?sin?2?C
  ,
  
  
  
  
  AG∶BG∶CG=2?sin??2C+2?sin??2B-?sin?2?A∶
  
  2?sin??2A+2?sin??2C-?sin?2?B
  
  ∶
  2?sin??2B+2?sin??2A-?sin?2?C
  ,
  说明:本文中我们的结论都是用三角形的内角表示的。显然,由正弦定理或余弦定理也可以得到用边表示的结果。我们用角表示结论意在说明,这些结论只与三角形的形状有关,与三角形的大小无关。
  注:①原题是一道选择题,因选择支不详而改成了填空题。为明确题意,加了“用角A、B、C表示”的要求。

标签:试题 自主招生 拓展