当前位置: 东星资源网 > 文档大全 > 推荐信 > 正文

【基于数字PID控制的光伏MPPT研究】 光伏控制逆变一体机

时间:2019-01-08 来源:东星资源网 本文已影响 手机版

  摘 要 介绍光伏电池的输出特性及最大功率点跟踪技术的基本原理,针对光伏电池的特点,提出一种采用数字PID控制实现光伏系统最大功率点跟踪(MPPT)控制的方法,它能快速响应外界环境的变化,使光伏系统始终工作在最大功率点。仿真和实验结果证明,该系统具有鲁棒性和快速响应等优点。
  关键词 光伏电池;MPPT;PID控制
  中图分类号:TM914.4 文献标识码:B 文章编号:1671-489X(2012)09-0098-03
  Study of MPPT based on Fuzzy Parameters Self-Tuning Digital PID Control//Wu Mao
  Abstract Output characteristic of the solar cell and the principle of Maximum Power Point Tracker are introduced. Based on the feature of the solar cell energy, digital PID controller is proposed to realize its MPPT (Maximum Power Point Tracking). Photovoltaic energy generation system can track the maximum power of PV cell rapidly by using digital PID. Simulation and experimental results show that the system has the robustness and the advantages of rapid response.
  Key words photovoltaic cell; MPPT; PID control
  Author’s address Foshan University, Foshan, Guangdong, China 528000
  
  近二三十年来,太阳能光伏(Photovoltaic,PV)发电技术得到持续发展,光伏发电已经成为利用太阳能主要方式之一。太阳能作为可再生的绿色能源,具有“取之不尽、用之不竭”、清洁、环保等优点,在未来的供电系统中将占有重要的地位。开展太阳能光伏发电技术的研究,对于缓解能源和环境问题,开拓广阔的光伏发电市场,具有重大的理论和现实意义。研究发现,太阳能发电效率较低成为当前影响其发展的因素之一。如何提高太阳能转换效率,降低系统造价,这是近些年的热点。最大功率跟踪(MPPT)技术就是针对提高太阳能电池发电效率进行研究的。本文采用数字PID控制方法,实现太阳能最大功率跟踪,结果表明此方法能够实现较好的控制性能。
  1 光伏电池的特性及MPPT原理
  1.1 光伏电池的数学模型
  光伏电池利用半导体材料的光伏效应制成,光伏电池组件的特性随太阳辐照度和电池温度而变化,即。根据电子学理论,光伏电池对应的函数为。
  其中:,,
  ,(式中为在参考日照下,电流变化温度系数,Amps/℃;为在参考温度下,电压变化温度系数,V/℃;为光伏电池的串联电阻,为短路电流,为开路电压,、为最大功率点对应的电压和电流)。
  光伏电池是一种非线性直流源,在不同光照强度和不同电池结温下光伏阵列输出特性曲线是不同的。当外界自然条件改变时,光伏阵列输出特性将随之改变,其输出功率及最大功率点亦相应改变。太阳能电池特性曲线如图1所示。对于光伏电池输出功率有。将两端对U求导,并将I作为U的函数,可得。
  从图1可知,当>0时,U小于最大功率点电压;当时,U大于最大功率点电压;当,U即为最大功率点电压。即有:
  ,
  ,
  。
  1.2 Buck电路实现MPPT的原理
  数字控制器主要实现光伏电池对蓄电池的充电,由于受到蓄电池过充电压的限制,本系统采用具有降压调节功能的Buck型变换器,它具有效率高、体积小的优点,如图2所示。
  在光伏系统中,为了寻求阻尼的最佳匹配,通常是通过控制PWM的占空比来实现光伏电池输出功率的最大化。
  2 MPPT数字PID控制器设计
  数字PID控制器的控制算式为:
  为了便于计算机编写程序,将上式变为:
  式中是数字PID控制器的输入;为第k个采样时刻的偏差值;是第k个采样时刻数字PID控制器的输出;T为采样周期;为积分系数,;为微分系数,。
  数字PID控制算法的增量式为:
  。
  图3为光伏系统的输出功率P和PWM占空比D关系的示意图,当dP/dD=0时,输出功率达到最大[1]。根据图3,取占空比D为数字PID控制器的控制量,为偏差信号,根据图2和图3寻找最大功率点的过程得到和的关系。
  1),若,此时在最大功率点左侧,占空比应继续增大,即;若,此时在最大功率点右侧,占空比应减小,即。
  2),若,此时在最大功率点左侧,占空比应继续减小,即;若,此时在最大功率点右侧,占空比应增大,即。
  根据上述分析可知,时,输出功率和占空比同方向改变;时,输出功率和占空比反方向改变。根据的情况可以设计增量式数字PID控制器为:
  当时,
  ;
  当时,
  。
  3 仿真结果分析
  系统运用MATLAB中的SIMULINK模块进行仿真,太阳能电池模型参数设置:开路电压V,短路电流A,输出最大功率时对应电压和电流分别为V,Imp=3.5 A,太阳能电池串联内阻 Ω;在参考日照下,电流变化温度系数(Amps/℃);在参考温度下,电压变化系数(V/℃),参考温度℃。取图2中的 μF,mH。光伏电池表面温度25 ℃,模拟日照强度在第2s时从800 W/m2突然降到600 W/m2、第4s时从600 W/m2突然增到1 000 W/m2的光伏电池输出功率仿真结果,图4为传统的数字PID控制MPPT仿真波形。
  从图中可以看出,日照强度从800 W/m2降到600 W/m2时,图4大约经过200 ms左右可再次找到最大功率点;当日照强度从600 W/m2增到1 000 W/m2时,图4大约经过200 ms左右再次找到最大功率点
  4 实验结果
  实验采用直流电源和一个串联电阻来代替太阳能电池,图5是实验系统框图,它主要由光伏模块、Buck电路、控制器构成。
  单片机对电压和电流信号采样,计算出功率及功率的变化量,送给模糊控制器和PID控制器,计算出占空比变化量,控制Buck电路开关的通断,来找到系统的最大功率点。
  采用图5实验装置,分别利用增量电导算法和PID控制算法实测佛山7月份一天中的光伏电池输出功率。实验中采用多晶硅太阳能电池板,开路电压V,短路电流A,输出最大功率时对应电压和电流分别为V、A,输出最大功率W。
  从图6中可以看出,在一天光照变化的过程中,两种控制器都可以较好地跟踪光伏电池的最大功率输出点。但是,采用PID控制算法的控制器,在跟踪过程中比增量电导算法可以使光伏电池损失功率更小,从而得到更大的输出功率。例如,在中午13时左右时,日照强度最强,此时PID控制器输出功率85 W左右,而增量电导控制器输出78 W左右。
  5 结语
  针对光伏电池的特点,将数字PID控制算法应用到光伏电池MPPT中,并与传统的增量电导算法进行比较。实验结果表明,数字PID控制算法能够稳定高效地跟踪光伏阵列的最大功率点,同时在光照强度等参数发生突变情况下能较快找到新的最大功率点,具有较高的控制精度和稳定性。
  参考文献
  [1]乔兴宏,吴必军,王坤林,等.基于模糊控制的光伏发电系统MPPT[J].可再生能源,2008,26(5):13-16.
  [2]张淼,吴捷,侯聪玲,等.自适应算法在光伏发电系统最大功率追踪中的应用[J].电力电子技术,2005,39(2):50-52.
  [3]张超,何湘宁.非对称模糊PID控制在光伏发电MPPT中的应用[J].电工技术学报,2005,20(10):72-75.
  [4]欧阳名三,余世杰,郑诗程,等.户用光伏电源模糊自适应PID控制的研究[J].电力电子技术,2003,37(2):35-37.

标签:光伏 控制 数字 研究