[平面组合图形面积计算方法的教学探究] 组合图形面积计算技巧

时间:2019-01-13 来源:东星资源网 本文已影响 手机版

  [关键词]平面组合图形 面积计算 教学实践 探究   [中图分类号]G[文献标识码]A   [文章编号]0450-9889(2012)01A-0088-02
  平面组合图形的面积计算在小学数学教材中占有十分重要的地位,它既是学生学习平面几何的前奏,又是学习立体几何的基础。如何通过求平面组合图形面积的教学,让学生掌握一些图形转换方法,感悟图形的排除、包含、转化等思想,从而达到发展学生空间观念和培养学生空间想象能力的目的?笔者根据长期的教学实践和体会,总结出以下一些方法。
  一、解题策略简述
  平面组合图形是由两个或两个以上简单的几何图形组合而成,计算它的面积应看清所求图形是由哪几个基本图形组合而成。在教学实践中,我常采用数据推导、割补、平移、巧添辅助线、旋转、组合等方法,将复杂问题简单化。
  二、解题方法具体说明
  1.数据推导。
  根据已知的公理、定义、定理、定律和题目中的数据等经过演算、逻辑推理而得出新的结论。
  (1)根据定义推导。
  例:如图1所示,计算图形的面积。(单位:厘米)
  思路分析与解:求梯形的面积,必须知道上底、下底和高这三个条件。从图中可以看出,此梯形的高是6米,那么解题的关键就是求出上底和下底的长度或求出它们的长度和。
  在左边的直角三角形中,一个内角是45°,可知它是等腰三角形,所以梯形高的左边部分与下底相等。同样,右边的三角形也是一个等腰三角形,所以梯形的上底和高的右边部分相等。这样根据等腰直角三角形的定义推导出梯形的上、下底的长度和就是梯形高的长度6厘米。因此图形的面积是:6x6+2=18(平方厘米)。
  (2)根据公式推导。
  例:如图2所示,直角三角形的面积是12平方厘米,求圆的面积。
  思路分析与解:要求圆的面积,必须要知道圆的半径。此题给出三角形的面积。暗示学生解题要通过三角形的面积求出半径的相关值,从而算出圆的面积。在图2中,三角形的底和高都是圆的半径,三角形面积为rxr+2=12(平方厘米),即r212+2=6(平方厘米),根据公式S圈=πγ2只要知道γ2等于多少,就可求出圆的面积。所以S圈=3.14x6=18.84(平方厘米)
  2.割补、平移。
  割补、平移是解决组合图形问题最常用的手段之一,它或是延长所求图形的某些边线,或是把图形切开,或是把切下来的那部分移动到其他位置,使题目便于解答。
  (1)补充。一例:如图3所示,一个等腰直角三角形。最长的边是16厘米,这个三角形的面积是多少平方米?
  思路分析与解:方法1:由于只知道三角形最长的边是16厘米,所以不能用三角形的面积公式来计算它的面积。教学时,我们可以让学生延长三角形的两条边,补充成一个正方形,显然拼成的正方形(如图4)的面积是16x16。那么,原三角形的面积是16x16+4=64(平方厘米)
  方法2:还可以只补充画一条直角边,拼成(如图5)一个大的等腰三角形。那么原三角形的面积为16x16+242=64(平方厘米)
  (2)分割。
  分割就是把图形切开.但是并不移动,使题目更为明了。
  例:如图6所示,梯形ABCD的上底是4厘米,下底是6厘米,高是4厘米.求阴影部分的面积。
  思路分析与解:根据“同一平面内,等底等高的三角形面积相等”这一知识,把图中的三个三角形进行“等积变形”,即切割成为与之面积相等的(如图7所示)中三角形ABC,原阴影部分的面积是6x4÷2=12(平方厘米)。
  (3)平移。
  将所给图形中的某一部进行切割,沿直线上下左右移动,把复杂的图形简单化。
  ①整合平移。
  例:如图8所示,正方形的边长为10厘米,里面横、竖各有三道黑条,黑条宽为1厘米,问:空白部分的面积是多少?
  思路分析与解:观察图8可知,黑条形状相同,我们可以将竖条左平移至如图9中的正方形的左边界,横条上平移到正方形的上边界。这样,空白部分的面积相当于一个边长为7厘米的正方形,因此,空白部分的面积是:7x7=49(平方厘米)
  ②翻转平移。
  例:如图10所示,求阴影部分面积。(单位:厘米)
  思路分析与解:以图lO中大圆的圆心为中心,将左侧小半圆切割后,旋转平移到右边的小半圆,就得到图11所示的形状,所求图10中的阴影部分面积就是求图11中较大半圆的面积:3.14x102+2=157(平方厘米)。
  ③等积平移。
  例:如图12所示,计算图中的阴影部分面积。(单位:厘米)
  思路分析与解:观察图12,根据三角形内角和定义与一边长相等得出,正方形内的三角形和外面的三角形面积相等,所以可以将图12阴影部分的三角形切割下来,并平移拼成一个{圆的面积(如图13)。S圈=3.14x52÷4=19.625(平方厘米)
  3.巧添辅助线。
  在所给的图形中,对尚未直接显现出来的各元素,通过添加适当辅助线,将那些特殊点、特殊线、特殊图形性质恰当揭示出来,并充分发挥这些特殊点、线的作用,达到化难为易的目的。
  (1)连接。
  例:如图14所示,计算阴影部分的面积。(单位:厘米)
  思路分析与解:图14中,阴影部分有两块,一在东,一在西,没有整合在一起,计算起来比较麻烦。如图15,给图形画上一条辅助线,计算起来就事半功倍,求阴影部分的面积也就是求正方形面积的一半:6x6÷2=18(平方厘米)。
  (2)延长。
  例:如图16所示,求四边形ABCD的面积。(单位:厘米)
  思路分析与解:学生一看图16,就会问:“这种四边形的面积怎么计算?”如果在图内作辅助线,根据已知条件也解决不了问题。其实图16原本是一个等腰直角三角形,只要延长AB边和CD边相交于一点(如图17),隐藏的条件就立即显现:大三角形是等腰直角三角形,小三角形也是等腰直角三角形。所以四边形ABCD的面积为:8x8÷2-4x4÷2=24(平方厘米)。
  (3)添加。
  例:如图18所示,正方形的面积为12平方厘米,计算圆的面积。
  思路分析与解:已知条件只给正方形的面积是12平方厘米,如何去计算出圆的面积?这就要给图形添加辅助线,只要通过圆心画两条直径(如图19),问题就迎刃而解了。从图19中可以看出,大正方形的面积是4个小正方形的面积和,而小正方形的面积等于边长乘边长,就是半径乘半径即半径的平方为12÷4=3(平方厘米),所以圆的面积是:3.14x3=9.42(平方厘米)。   4.旋转。
  就是把图形按照预定的方向旋转一定的角度,不改变原图的大小,以达到解决问题的目的。
  例:如图20所示,正方形内有一个最大的圆,圆内又有一个最大的正方形。如果大正方形的面积是22平方厘米,请计算小正方形的面积。
  思路分析与解:要求正方形的面积,就要知道正方形的边长,不过此题的正方形边长无法求得,教学时,我们可以从两个正方形之间找到关系。把小正方形绕着它的中心旋转45°后,再加两条辅助线(如图21),学生就会发现小正方形是由4个相同的三角形组成,而大正方形是由同样的8个三角形组成,所以小正方形的面积正好是大正方形面积的一半。小正方形的面积是22÷2=11(平方厘米)。
  5.组合。
  通过改变基本图形的位置或形状(但不改变图形的大小),把几个基本图形合并成一个基本图形,然后间接求整个图形的面积。
  例:如图22所示,已知直角三角形两条直角边的长度之和是7厘米,斜边长是5厘米,求这个三角形的面积。
  思路分析与解:直接利用题中的已知条件无法求出它的面积,这就要进行图形组合。在教学中,让学生准备4块有“90°、60°、30°”的直角三角板,并把直角边摆在外层,拼成如图23的一个正方形。在图23中,学生通过观察就会很快发现大正方形的边长恰好是每个直角三角形两条直角边的长度和,而小正方形的边长正好是每个直角三角形的斜边长。要求图22三角形的面积就变得简单了,就是用大正方形的面积减去小正方形的面积的差除以4即可,也就是:(7x7-5x5)÷4=6(平方厘米)。
  当然,在课堂教学中,学生组拼三角形的时候,有的会拼出如图24的组合情况,就是把直角三角形的斜边摆在外层。这种组合会得到:大正方形的边长是直角三角形的斜边长度,小正方形的边长是两条直角边的差。如果题目是已知直角三角形两条直角边的长度之差是2厘米,斜边长是5厘米,就可以求这个三角形的面积。上面两个组合图凸显了数学的美感和实用性,不但生动有趣,利用它们还能解决生活中的一些疑难问题。
  著名心理学家皮亚杰认为“科学知识永远在演进中,它是一个不断构造和改组的过程”。在教学组合图形面积计算的过程中,我们教师应注重让学生通过动手操作、观察、推理等手段,分析探究组合图形,找出图形的隐含的条件。这样,我们的教学在发展学生空间观念的同时,他们也能利用学到的知识去解决生活中的实际问题。
  (责编 罗永模)

标签:组合 探究 图形 平面